Computing Branchwidth Via Efficient Triangulations and Blocks

نویسندگان

  • Fedor V. Fomin
  • Frédéric Mazoit
  • Ioan Todinca
چکیده

Minimal triangulations and potential maximal cliques are the main ingredients for a number of polynomial time algorithms on different graph classes computing the treewidth of a graph. Potential maximal cliques are also the main engine of the fastest so far exact (exponential) treewidth algorithm. Based on the recent results of Mazoit, we define the structures that can be regarded as minimal triangulations and potential maximal cliques for branchwidth: efficient triangulations and blocks. We show how blocks can be used to construct an algorithm computing the branchwidth of a graph on n vertices in time (2 √ 3)n · nO(1).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient enumeration of 3-manifold triangulations

Triangulations describe how different low-dimensional topological spaces can be constructed from simple building blocks. Forming an exhaustive list of all small triangulations is difficult, typically involving a slow computer-based search. We present techniques for improving the efficiency of such searches, thereby allowing more extensive lists to be constructed.

متن کامل

Branchwidth of chordal graphs

This paper revisits the ’branchwidth territories’ of Kloks, Kratochv́ıl and Müller [12] to provide a simpler proof and a faster algorithm for computing branchwidth of an interval graph. We also generalize the algorithm to the class of chordal graphs, albeit at the expense of exponential running time. Compliance with the ternary constraint of the branchwidth definition is facilitated by a simple ...

متن کامل

Planar Branch Decompositions II: The Cycle Method

T is the second of two papers dealing with the relationship of branchwidth and planar graphs. Branchwidth and branch decompositions, introduced by Robertson and Seymour, have been shown to be beneficial for both proving theoretical results on graphs and solving NP-hard problems modeled on graphs. The first practical implementation of an algorithm of Seymour and Thomas for computing optimal bran...

متن کامل

New Tools and Results for Branchwidth

We provide new tools, such as k-troikas and good subtree-representations, that allow us to give fast and simple algorithms computing branchwidth. We show that a graph G has branchwidth at most k if and only if it is a subgraph of a chordal graph in which every maximal clique has a k-troika respecting its minimal separators. Moreover, if G itself is chordal with clique tree T then such a chordal...

متن کامل

Computing Branch Decomposition of Large Planar Graphs

A graph of small branchwidth admits efficient dynamic programming algorithms for many NP-hard problems on the graph. A key step in these algorithms is to find a branch decomposition of small width for the graph. Given a planar graph G of n vertices, an optimal branch decomposition of G can be computed in polynomial time, e.g., by the edge-contraction method in O(n) time. All known algorithms fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005